Structural Grading

Criterion for sort is estimation of structural properties

- Classification of timber used for
 - Load carrying members
 - Framing in houses & MRTFC
 - Substructures for floors
 - Timbers for bridges, wharfs
- Important where products carry
 - Construction loads
 - Building self-weight
 - Wind loads
 - Imposed actions

Structural Grading

- Used for classification of timber with defined structural properties
 Each grade associated with a suite of
 - structural properties

Structurally graded products need to be assigned properties for designers to use

TABLE 2.4From AS1720.1STRUCTURAL DESIGN PROPERTIESFOR F-GRADES

		Charae	cteristic stre	Characteristic short		
		Tension parallel to		Shear in	Compression	duration average
Stress	Bending	grain		beam	parallel to	modulus of elasticity
Grade		(f'_t)			grain	parallel to grain, Mpa
	(f'_{b})	Hardwood	Softwood	(f'_{s})	(f'c)	(E)
F34	100	60	50	7.2	75	21 500
F27	80	50	40	6.1	60	18 500
F14	40	25	21	3.7	30	12 000
F11	35	20	17	3.1	25	10 500
F8	25	15	13	2.5	20	9 100
F7	20	12	10	2.1	15	7 900
F5	16	9.7	8.2	1.8	12	6 900
F4	13	7.7	6.5	1.5	9.7	6 100

Properties of Stress Grades

High Stress grade = High strength and stiffness

Each grade associated with a suite of structural properties

- strength characteristic value based on 5th %ile (conservative - involves safety)
- stiffness characteristic value close to average (realistic for most applications)

Properties of Stress Grades

Grade name relates to properties

- **F-grades** number relates to bending strength (around 1/3 of f'_b)
- **MGP grades** number relates to stiffness (around 1/1000 of *E*)

Limited number of grade descriptions

- F- grade system general visually graded timber
- MGP grades machine graded seasoned softwoods
- GL grades glued laminated timber
- A grades visually graded seasoned Victorian Ash

	Used by producers	Used by designers		
	Grading method	Design properties		
		AS 1720.1		
•	F- grades (visual, machine)	• F- grades		
•	MGP grades (machine)	MGP grades		
•	GL grades (manufacture)	GL grades		
•	A - grades (visual)	• A - grades		

Grading is link between producer & designer

Stress Grades

- Stress grade is assigned to a package of timber
- Stress grade gives structural properties
 - Each piece in a package can be taken to have those properties
 - In most cases, timber has significantly greater strength than the stress grade (5th%ile)
 - Stiffness is frequently close to the stiffness assigned to the stress grade (mean)

Stress Grades

Each piece marked with Stress Grade at grading

- Coloured marks (machine stress grading) indicate F-grades
- Laser printed or roller stamp MGP grades

Structural Grading Methods

- Structural grading is based on correlation between strength and a *grading parameter*
- Visual stress grading presence or absence of natural characteristics
- Machine stress grading stiffness on flat (minor axis MoE)
- Proof grading ability to take a proof load. Each piece passed through machine, bending applied at about characteristic strength level. Broken pieces fail unbroken ones pass
- Quality control verification of grade properties by testing

AS 1748

Visual Stress Grading

- Very different to appearance grading-
 - different characteristics are important
 - different sizes & location of each feature are allowed
- Each piece of timber examined by a <u>trained</u> <u>grader</u> for characteristics known to decrease strength, stiffness or utility
 - **knots** size, location, angle and position in relation to others
 - slope of grain on each face or edge
 - splits and checks

(Checks that may be important to appearance grading may not be important here)

Machine Stress Grading

- Relies on correlation between a measured structural property and all others
- Minor axis E most commonly used
 - each piece tested in non-destructive bending about minor axis over most of the length
 - minimum *E* value determines grade (F-grade, MGP grade) of whole piece
 - grade stamp often automatically applied by the machine (visual check after grading can over-ride machine grade stamp to downgrade piece)

Scanning

- Electromagnetic radiation passed through timber
- Gives indication of
 - density
 - slope of grain
 - internal imperfections
- Potential for the development of very sophisticated grading methods

Proof Grading

Grade verification technique

Timber initially sorted using a documented process

Significant major axis bending load applied

Rajj

Grade verified Pieces sold as Proof graded timber

If too many pieces fail, producer must adjust initial sorting process

rejected

broken pieces

Example - proof graded cypress

Grading - the vital link

Producer

- sorts timber into groups with similar characteristics and properties
- grades timber product with similar properties assigned a grade (structural properties give stress grade)
- stamps timber to clearly indicate stress grade, species, moisture content, treatment, type of grading

Grading - the vital link

Designers and Builders

- rely on producers to grade timber products accurately and consistently
- specify and use timber by grade to ensure the product used for a specific purpose has appropriate properties to satisfy functional requirements

Ensures you

get what you

want

Ensures Producers, Designers and Builders are all speaking the same language

Grading - the vital link

Designer specifies by grade

Upper frame - MGP 10 used adequate properties to accommodate lower loads

Ground frame - MGP 12 used appropriate properties to carry higher loads

Both designer and builder are confident that timber has desired properties to do the job required

Grade stamp identifies MGP 10

Builder uses by grade mark

Grade stamp identifies MGP 12